Nuprl Lemma : es-local-prior-state_wf 11,40

es:ES, AT:Type, X:AbsInterface(A), base:Tf:(TAT), e:E. prior-state(f;base;X;e T 
latex


Definitions(e <loc e'), e c e', e loc e' , sender(e), -n, i  j , x.A(x), pred(e), first(e), suptype(ST), pred!(e;e'), kind(e), loc(e), SWellFounded(R(x;y)), x:AB(x), (x  l), |g|, n - m, S  T, n+m, #$n, Outcome, A  B, False, {T}, a < b, , p q, p  q, p  q, e = e', deq-member(eq;x;L), a = b, a = b, qeq(r;s), q_less(a;b), q_le(r;s), eq_atom$n(x;y), [d], a < b, x f y, a < b, null(as), x =a y, (i = j), i j, i <z j, p =b q, constant_function(f;A;B), r  s, e < e', val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , , Msg(M), kindcase(ka.f(a); l,t.g(l;t) ), x,yt(x;y), xt(x), Knd, EState(T), f(a), EOrderAxioms(Epred?info), Id, IdLnk, Unit, EqDecider(T), X(e), E(X), a:A fp B(a), strong-subtype(A;B), f(x)?z, type List, P  Q, P & Q, P  Q, {x:AB(x)} , x:A.B(x), Void, if b then t else f fi , case b of inl(x) => s(x) | inr(y) => t(y), Top, tt, b, (e < e'), t.1, let x,y = A in B(x;y), left + right, x:A  B(x), <ab>, P  Q, prior-state(f;base;X;e), , , e  X, prior(X), ff, AbsInterface(A), Type, ES, b, s = t, A, x:AB(x), E, x:AB(x), t  T
Lemmasassert wf, not wf, bnot wf, bool wf, subtype rel wf, top wf, es-interface-subtype rel, es-interface wf, member wf, es-prior-interface wf, es-E-interface wf, es-E wf, es-interface-val wf, es-interface-val wf2, event system wf, deq wf, unit wf, IdLnk wf, Id wf, EOrderAxioms wf, EState wf, Knd wf, kindcase wf, Msg wf, nat wf, rationals wf, val-axiom wf, cless wf, qle wf, constant function wf, es-is-interface wf, assert of bnot, eqff to assert, iff transitivity, eqtt to assert, false wf, le wf, es-causl wf, guard wf, nat ind tp, es-causl-swellfnd, strongwellfounded wf, pred! wf, first wf, loc wf, kind wf, nat properties, ge wf, es-prior-interface-causl, es-E-interface-subtype rel

origin